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Abstract—WiFi fingerprint-based localization is regarded as
one of the most promising techniques for indoor localization. The
location of a to-be-localized client is estimated by mapping the
measured fingerprint (WiFi signal strengths) against a database
owned by the localization service provider. A common concern
of this approach that has never been addressed in literature is
that it may leak the client’s location information or disclose the
service provider’s data privacy. In this paper, we first analyze
the privacy issues of WiFi fingerprint-based localization and
then propose a Privacy-Preserving WiFi Fingerprint Localization
scheme (PriWFL) that can protect both the client’s location
privacy and the service provider’s data privacy. To reduce the
computational overhead at the client side, we also present a
performance enhancement algorithm by exploiting the indoor
mobility prediction. Theoretical performance analysis and ex-
perimental study are carried out to validate the effectiveness of
PriWFL. Our implementation of PriWFL in a typical Android s-
martphone and experimental results demonstrate the practicality
and efficiency of PriWFL in real-world environments.

Index Terms—WiFi fingerprint-based localization; location
privacy; data privacy; homomorphic encryption.

I. INTRODUCTION

The high demand for location information to enable perva-
sive computing applications in indoor environments, coupled
with the lack of GPS signals in buildings, has motivated a
large body of research on indoor localization. In particular,
there has been a focus on leveraging existing infrastructures
(e.g., WiFi access points) to enable indoor localization, taking
advantage of the fact that the cost of deploying a specialized
infrastructure for localization can be avoided. One of the
most popular localization techniques used for positioning with
wireless access points is based on the received signal strength
(RSS) and the method of fingerprinting [1], [2], [3], [4]. Com-
mercial providers of this type of positioning services include
Google, Navizon, Skyhook Wireless, as well as WiFiSLAM.

WiFi fingerprint-based localization consists of two phases,
offline training and online operating. In the offline training
phase, the service provider measures the WiFi signal strengths
(WiFi RSS fingerprints) from various access points (APs)
of known locations and records the WiFi fingerprints and

the corresponding locations in a fingerprint database. The
database can be stored on a localization server operated by
the service provider or distributed to clients’ end devices.
During the online operating phase, a client that is going to
locate itself could measure the signal strengths at a specific
location from nearby APs to obtain the WiFi RSS fingerprints
at this position. Then an algorithm is employed to compute the
Euclidean distance between the sampled data and each WiFi
fingerprint in the database. After that, 𝑘 “closest fingerprints”
are chosen to derive the client’s location.

Although regarded as a promising approach for indoor
localization, WiFi fingerprint-based localization can lead to
potential privacy violations. On one hand, a localization query
carrying the client’s WiFi fingerprint can inevitably leak
the client’s location information. Existing research indicates
that location traces can leak information about the individ-
uals’ habits, interests, activities, and relationships [5], [6].
Consequently, the loss of location privacy can expose users
to unwanted advertisements and location-based spams/scams,
may cause social reputation or economic damage to the users,
and can make the users victims of blackmails or even physical
violences. On the other hand, due to the high cost of building a
fingerprint database, the service provider has a strong incentive
to protect its precious WiFi fingerprint data from leaking
to unauthorized mobile users. Therefore, keeping the data
confidentiality while still allowing the proper functionality of
the WiFi fingerprint database is another fundamental require-
ment to achieve a practical WiFi fingerprint-based positioning
system.

Several approaches have been proposed to protect clients’
location privacy in location-based services (e.g., k-anonymity
[7], [8] and mix zones [9]). However, they face the chal-
lenge of lacking trusted third parties in WiFi fingerprint-based
localization. Furthermore, these works intend to protect the
location privacy of the users requesting location-based services
by submitting their location information with the requests,
assuming that each client has obtained its location without any
privacy concern. Another line of related research is privacy-
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preserving biometric identification [10], [11], which seeks only
the closest match. In contrast, in our WiFi fingerprint-based lo-
calization, 𝑘 “closest fingerprints” are required simultaneously
for location estimation.

In this paper, we propose a Privacy Preserving WiFi
Fingerprint-based Localization scheme, coined as PriWFL. We
first give a naive version of PriWFL, addressing how clients’
location privacy can be protected based on homomorphic
encryption. To overcome the privacy vulnerabilities of the
naive scheme, several enhancements are introduced to obtain
the complete version of PriWFL which can protect both the
client’s location privacy and the service provider’s data priva-
cy. Furthermore, to mitigate the client’s computational over-
head, we present a novel indoor mobility prediction algorithm.
Experimental results and theoretical performance analysis both
demonstrate the effectiveness of our proposed scheme in
privacy protection for WiFi fingerprint-based localization. The
major contributions of this paper are summarized as follows:

∙ To the best of our knowledge, this work is the first
to address the privacy issues of WiFi fingerprint-based
localization.

∙ We propose and justify the design motivation of PriWFL,
a novel scheme that can protect the client’s location
privacy and the server’s data privacy.

∙ We design an indoor mobility prediction algorithm to
reduce the computational overhead at the client side.

∙ We implement PriWFL and carry out a comprehensive
experimental study in typical office buildings to evaluate
its performance.

The rest of the paper is organized as follows. Section II
introduces the background and threat model. Section III details
the description of our proposed scheme. Section IV presents
the indoor mobility prediction algorithm. Section V reports the
experimental evaluation results. We discuss the related work
in Section VI and conclude this paper in Section VII.

II. BACKGROUND AND THREAT MODEL

A. Overview of WiFi Fingerprint-Based Localization

WiFi fingerprint-based localization is one of the most com-
monly used indoor localization techniques. The process of
WiFi fingerprint-based localization can be divided into two
phases: offline training phase and online operating phase.
During the training phase, experts (hired by the service
provider) measure the WiFi fingerprint 𝑉𝑖 at each location
(𝑥𝑖, 𝑦𝑖) in an interested area, and store ⟨𝑖, (𝑥𝑖, 𝑦𝑖) , 𝑉𝑖⟩ in the
WiFi fingerprint database 𝐷. Here 𝑉𝑖 = (𝑣1, 𝑣2, ..., 𝑣𝑗 , ..., 𝑣𝑁 )
is a 𝑁 -dimensional feature vector, with 𝑣𝑗 being the average
WiFi signal strength at location (𝑥𝑖, 𝑦𝑖) from the 𝑗th access
point 𝐴𝑃𝑗 , and 𝑁 being the total number of access points.
The database 𝐷 can be stored on a localization server or
distributed to the clients. In the online operating phase, a to-be-
localized client first samples the signal strengths from various
APs, which is denoted as 𝑉 ′ =

(
𝑣′1, 𝑣

′
2, ..., 𝑣

′
𝑗 , ..., 𝑣

′
𝑁

)
. Then

the squared Euclidean distance 𝑑𝑖 between 𝑉 ′ and a WiFi

fingerprint 𝑉𝑖 is computed as follows

𝑑𝑖 = ∥𝑉 ′ − 𝑉𝑖∥2 =

𝑁∑
𝑗=1

(𝑣𝑖,𝑗 − 𝑣′𝑗)
2

=

𝑁∑
𝑗=1

𝑣2𝑖,𝑗︸ ︷︷ ︸
𝑆𝑖,1

+

𝑁∑
𝑗=1

(−2𝑣𝑖,𝑗 ⋅ 𝑣′𝑗)︸ ︷︷ ︸
𝑆𝑖,2

+

𝑁∑
𝑗=1

𝑣′2𝑗︸ ︷︷ ︸
𝑆3

(1)

Finally, the 𝑘 nearest neighbors are selected to estimate the
client’s location, i.e., the centroid of the locations correspond-
ing to the 𝑘 nearest neighbors is the location of the to-be-
localized client.

B. Threat Models and Assumptions

Our study considers both the client’s location privacy and
the service provider’s data privacy. From a client’s perspective,
the WiFi position system should allow the client to make the
geo-localization without compromising its location privacy.
The attacker could be a curious service provider who collects
the locations of the customers to make marketing and sales
strategies, or an external attacker who harvests the locations
of wireless users and sells them for profit. Two location privacy
threats are considered in this study.

∙ Location Privacy Attack I: In this attack, the attacker
directly obtains the client’s location from the query.

∙ Location Privacy Attack II: In this attack, the attacker
gets the client’s sampled WiFi RSS and then infers
client’s location.

The service provider should also keep its WiFi fingerprint
database from unauthorized leaking. For example, a malicious
client may download the database and sell it for profit. The
privacy attacks suffered by a service provider can be classified
as follows:

∙ Data Privacy Attack I: The attacker gets a WiFi
fingerprint database, which is exactly the same as the
localization service provider’s database 𝐷.

∙ Data Privacy Attack II: The attacker gets a WiFi
fingerprint database 𝐷′, which is similar to the service
provider’s database 𝐷 and the localization accuracy of
using 𝐷′ is comparable with that of using 𝐷.

In this work, we consider a general curious-but-honest
attack model; namely, both a client and the service provider
honestly follow the designed protocol but each intends to
disclose the other’s private information.

C. The Paillier Cryptosystem

In this work, we employ the Paillier cryptosystem as our
cryptographic primitive. Invented by Pascal Paillier [12], the
Paillier cryptosystem is a probabilistic asymmetric algorithm
based on the decisional composite residuosity problem. Define
𝑛 = 𝑝𝑞, with 𝑝 and 𝑞 being two large prime numbers. Let
𝑔 = 𝑛 + 1 [13], and 𝑚 be the plaintext to be encrypted.
Denote the ciphertext of 𝑚 by [[𝑚]], which is given by

[[𝑚]] = 𝑔𝑚𝑟𝑛 mod 𝑛2 (2)
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where 𝑟 ∈ ℤ
∗
𝑛 is a random number. Due to the choice

of 𝑔, encryption requires one modular exponentiation and
two modular multiplications while decryption involves one
modular exponentiation.

The Paillier cryptosystem is additively homomorphic. Given
only the public key, one can compute [[𝑚1 +𝑚2]] from [[𝑚1]]
and [[𝑚2]] as follows:

[[𝑚1 +𝑚2 mod 𝑛]] = [[𝑚1]] ⋅ [[𝑚2]] mod 𝑛2 (3)

Furthermore, given [[𝑚]] and a constant 𝑐, [[𝑐 ⋅𝑚 mod 𝑛]] can
be computed by:

[[𝑐 ⋅𝑚 mod 𝑛]] = [[𝑚]]
𝑐

mod 𝑛2 (4)

III. PRIVACY PRESERVING WIFI FINGERPRINT-BASED

LOCALIZATION SCHEME

To address the privacy issues described above, we propose
a Privacy Preserving WiFi Fingerprint-Based Localization
scheme, termed PriWFL, in this section. To better present our
design motivations, we first give a naive version of PriWFL
and analyze its weakness; then we present the complete
version of PriWFL and prove its strength in protecting the
location privacy of the clients and the data privacy of the
service provider. For simplicity, we first consider a one-
building scenario; then discuss how to extend the scheme to
a multi-building scenario.

A. Scheme Overview

As shown in Figure 1, PriWFL involves two components:
client and localization server. The server operated by the
service provider holds a fingerprint database ⟨𝑖, (𝑥𝑖, 𝑦𝑖), 𝑉𝑖 =
{𝑣𝑖𝑗}𝑁𝑗=1⟩𝑀𝑖=1, where 𝑖 is an index, 𝑉𝑖 denotes the WiFi
fingerprint of location (𝑥𝑖, 𝑦𝑖), and 𝑁 is the total number
of APs. PriWFL is decomposed into four phases. In the Pre-
process phase, the server distributes some metadata to a to-be-
localized client. This phase can be executed before the client
uses the localization service, and only needs to be performed
once. In the Preparation phase, the client generates a pair of
keys < 𝑃𝐾𝑐, 𝑃𝑅𝑐 > using the Paillier cryptosystem, encrypts
the sampled WiFi fingerprint 𝑉 ′ using its public key 𝑃𝐾𝑐,
and then submits the corresponding ciphertext and 𝑃𝐾𝑐 to
the server. In the Distance Computation phase, the server
computes the encrypted distance [[𝑑𝑖]] between 𝑉 ′ and each
WiFi fingerprint 𝑉𝑖 in 𝐷 based on homomorphic encryption.
At the end of this phase, the server returns {[[𝑑𝑖]]}𝑀𝑖=1 back to
the client. Finally in the Location Retrieval phase, the client
decrypts {[[𝑑𝑖]]}𝑀𝑖=1 using it’s private key 𝑃𝑅𝑐, finds 𝑘 “closest
fingerprints”, and estimates its location based on the metadata.

B. The Naive PriWFL and Its Privacy Analysis

In this section, we first introduce the naive PriWFL, which
is based on homomorphic encryption. Then we discuss the
privacy issues of the naive scheme.

metadata

Distance
Computation Phase

Location Retrival Phase

cPR

1' ( ',..., ')NV v v

Pre-process
PhasePreparation

Phase

Fingerprint 
database

Fig. 1. The Overview of PriWFL.

1) The Naive PriWFL: The four phases of the naive Pri-
WFL are detailed as follows.

Pre-Process Phase: Assume that the server holds a finger-
print database 𝐷 = ⟨𝑖, (𝑥𝑖, 𝑦𝑖), 𝑉𝑖 = {𝑣𝑖𝑗}𝑁𝑗=1⟩𝑀𝑖=1, which is
collected from a building 𝐵. In this phase, the server dis-
tributes the metadata extracted from the database to the client.
The metadata consists of two tables 𝑇1 = ⟨𝑖, (𝑥𝑖, 𝑦𝑖)⟩𝑀𝑖=1

and 𝑇2 = ⟨𝐴𝑃𝑖⟩𝑁𝑖=1. Here 𝑇1 stores the indexes and all
the locations at which the WiFi fingerprints are measured.
From 𝑇2, the client gets to know which APs can be used for
localization and how to line up the sensed WiFi fingerprint
with the fingerprints in the database.

This phase can be executed before a client uses the local-
ization service, and only needs to be performed once. From
the metadata, the client knows the corresponding physical
locations of the fingerprints in the database but not the
fingerprints themselves. Note that a malicious client cannot
build up its own localization system by knowing only the
metadata; thus distributing the metadata to the client does not
compromise the service provider’s data privacy.

Preparation Phase: When a client holding a sampled WiFi
fingerprint 𝑉 ′ = (𝑣′1, 𝑣

′
2, ..., 𝑣

′
𝑁 ) needs to be localized, it first

generates a pair of keys < 𝑃𝐾𝑐, 𝑃𝑅𝑐 > using the Paillier
cryptosystem, and publishes the public key 𝑃𝐾𝑐 to the server.

Then it encrypts {−2𝑣′1,−2𝑣′2, ...,−2𝑣′𝑁} and 𝑆3 =
𝑁∑
𝑗=1

𝑣′2𝑗

using the public key 𝑃𝐾𝑐. Finally, the client sends a request
containing [[−2𝑣′1]],...,[[−2𝑣′𝑁 ]] and [[𝑆3]] to the server.

Distance Computation Phase: After receiving the client’s
request, the server computes the encrypted squared Euclidean
distance [[𝑑𝑖]] between 𝑉 ′ and 𝑉𝑖 using homomorphic encryp-
tion: [[𝑑𝑖]] = [[𝑆𝑖,1 + 𝑆𝑖,2 + 𝑆3]] = [[𝑆𝑖,1]] ⋅ [[𝑆𝑖,2]] ⋅ [[𝑆3]] where

[[𝑆𝑖,1]] and [[𝑆𝑖,2]] can be computed by [[𝑆𝑖,1]] =

[[
𝑁∑
𝑗=1

𝑣2𝑖,𝑗

]]
and

[[𝑆𝑖,2]] =

[[
𝑁∑
𝑗=1

(−2𝑣𝑖,𝑗 ⋅ 𝑣′𝑗)
]]

=
𝑁∏
𝑗=1

[[
(−2𝑣′𝑗)

]]𝑣𝑖,𝑗
. Then, the

server sends {[[𝑑𝑖]]}𝑀𝑖=1 back to the client.
Location Retrieval Phase: After receiving the encrypted

distance, the client first decrypts {[[𝑑𝑖]]}𝑀𝑖=1. Then it finds
out the 𝑘 smallest distances {𝑑𝐼1 , 𝑑𝐼2 , ..., 𝑑𝐼𝑘}. Accordingly,
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{(𝑥𝐼1 , 𝑦𝐼1) , (𝑥𝐼2 , 𝑦𝐼2) , ..., (𝑥𝐼𝑘 , 𝑦𝐼𝑘)} are retrieved from table
𝑇1 using indexes {𝐼1, 𝐼2, ..., 𝐼𝑘}. Finally, the client estimates
its own position by computing the centroid of the 𝑘 locations.

2) Privacy Analysis: From the client’s perspective, al-
though the server gets a list of encrypted squared Euclidean
distances {[[𝑑𝑖]]}𝑀𝑖=1, it can not find the 𝑘 nearest neighbors.
Furthermore, the Location Retrieval Phase is performed only at
the client side; thus the naive scheme is resistant to Location
Privacy Attack I. On the other hand, as the client’s WiFi
fingerprint sent to the server is encrypted, the server can
not recover it without the client’s private key; thus the naive
scheme is resistant to Location Privacy Attack II.

Though the naive scheme can protect the client’s location
privacy, the service provider’s data privacy can be threatened
by a malicious client through the following two ways:

Data Privacy Attack I: A malicious client randomly
generates 𝑃 WiFi fingerprints, denoted as {𝑉 ′

ℎ}𝑃ℎ=1, with
𝑉 ′
ℎ = {𝑣′ℎ,1, 𝑣′ℎ,2, ..., 𝑣′ℎ,𝑁}. Then it gets the Euclidean distance

𝑑ℎ,𝑖 between 𝑉 ′
ℎ and 𝑉𝑖 from the server. For each 𝑉 ′

ℎ, the
following 𝑀 equations can be constructed:⎧⎨

⎩

∥𝑉 ′
ℎ − 𝑉1∥ =

𝑁∑
𝑗=1

(𝑣′ℎ,𝑗 − 𝑣1,𝑗)
2 = 𝑑ℎ,1

∥𝑉 ′
ℎ − 𝑉2∥ =

𝑁∑
𝑗=1

(𝑣′ℎ,𝑗 − 𝑣2,𝑗)
2 = 𝑑ℎ,2

...

∥𝑉 ′
ℎ − 𝑉𝑀∥ =

𝑁∑
𝑗=1

(𝑣′ℎ,𝑗 − 𝑣𝑀,𝑗)
2 = 𝑑ℎ,𝑀

(5)

Thus, the client gets 𝑀 ⋅ 𝑃 equations in total for 𝑀 ⋅ 𝑁
unknowns. If 𝑃 ≥ 𝑁 , the malicious client can solve the
equations and get {𝑉𝑖}𝑀𝑖=1.

Data Privacy Attack II: A malicious client can get a
fingerprint database 𝐷′ similar to the server’s database 𝐷 in
two steps. As a WiFi RSS is usually an integer between 0 and
−90 (in unit of dBm), the malicious client can fabricate as
many WiFi fingerprints as possible within the valid scope in
the first step. For each fabricated WiFi fingerprint 𝑉 ′

ℎ, the ma-
licious client gets the squared Euclidean distance between 𝑉 ′

ℎ

and each fingerprint in 𝐷, and computes the corresponding lo-
cation (𝑥′

ℎ, 𝑦
′
ℎ). Then the malicious client adds ⟨(𝑥′

ℎ, 𝑦
′
ℎ) , 𝑉

′
ℎ⟩

to its own database 𝐷′. However, if the malicious client
uses 𝐷′ for indoor localization, the performance may decline
dramatically compared with that of using 𝐷, because many
WiFi fingerprints in 𝐷′ do not exist in real-world environment,
even taking the RSS variation into consideration. We refer
these fingerprints as noisy fingerprints, which can bring large
localization errors.

Thus in the second step, the malicious client filters out the
noisy fingerprints. There always exists a transient variation in
WiFi RSS due to dynamic changes in the environment, such
as that caused by a nearby moving object [3]. Assume that the
variation is within 𝜀 [14] [15]. Then the malicious client can
conclude that a WiFi fingerprint 𝑉 ′

ℎ does not exist even taking
the WiFi RSS variation into consideration if

for ∀𝑖 ∈ {1, 2, ...,𝑀}, 𝑑ℎ,𝑖 > 𝑁𝜀2, (6)

i.e., a WiFi fingerprint 𝑉 ′
ℎ does not exist if the squared

Euclidean distance between itself and any record in 𝐷 is higher
than 𝑁𝜀2. Filtering out such noisy fingerprints from 𝐷′ yields
a fingerprint database similar to 𝐷.

C. The Complete PriWFL Scheme

To thwart the privacy attacks described above, we enhance
the naive PriWFL from the following three aspects: i) each
time the server receives a request, it randomly chooses 𝑁 ′

APs from 𝑁 APs to calculate the squared Euclidean distance;
ii) the server blinds the Euclidean distance by a random
number; and iii) the client uses 𝑁 random numbers to mask
its WiFi fingerprint. In the following subsections, we first
conduct a measurement study to investigate the impact of 𝑁 ′

on the localization accuracy; then we present the details of
the scheme and prove that the client can correctly retrieve its
location; and finally we present our privacy analysis.

1) A Measurement Study of WiFi Fingerprint-Based Lo-
calization: The purpose of this study is to investigate the
impact of 𝑁 ′ (namely the number of APs) on the local-
ization accuracy. We conduct an experiment in three real-
world environments. During the training phase, we partition
the indoor space into a mesh of 4𝑚2 grids, and measure the
WiFi fingerprints at each grid. During the operating phase, we
utilize a conventional smartphone to sample the WiFi RSS for
localization at various positions. To estimate the location, we
use 3 nearest neighbors (𝑘 = 3).

We employ the localization error to quantify accuracy.
Figure 2 presents the cumulative distribution function (CDF)
of the localization error when the number of APs is varied
from 1 to 10. It is observed that the localization accuracy
is significantly improved when the number of APs increases
from 1 to 6. However, when the number of APs goes beyond 6,
the improvement of localization accuracy becomes negligible.
This implies that more number of APs does not bring more
information to localization when granularity of the fingerprint
database remains unchanged because the 𝑘 nearest neighbors
in the database does not change.

These experimental results indicate that the localization
accuracy improves with the increase of the number of APs.
However, when the number of APs reaches a “threshold” (6 for
our experimental environment), it does not obviously increase.
Nowadays, WiFi APs are widely and densely deployed in
many indoor environments (e.g., office buildings, shopping
malls, and airport terminals). Thus within a single place, a
device can hear tens of APs, which implies that the dimension
𝑁 of the WiFi fingerprints is quite large. Since a large 𝑁 does
not improve the localization error, the server can randomly
selects 𝑁 ′ (6 ≤ 𝑁 ′ ≤ 𝑁 in our experiment) APs to locate the
client without decreasing the localization accuracy.

2) The Complete PriWFL Protocol: Like its naive version,
the complete PriWFL consists of four phases, among which
the first phase remains unchanged. Thus in the following we
only detail the other three phases.

Preparation Phase: When a client needs to be locat-
ed, it first generates a pair of keys < 𝑃𝐾𝑐, 𝑃𝑅𝑐 >
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(b) The location accuracy in building 2.
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(c) The location accuracy in building 3.

Fig. 2. The impact of the number of APs on localization accuracy.

using the Paillier cryptosystem, and publishes the pub-
lic key 𝑃𝐾𝑐. Then it selects 𝑁 big random number-
s {𝑟1, 𝑟2,...,𝑟𝑁} and encrypts {−2𝑣′1, ... − 2𝑣′𝑁}, {𝑣′21 +
𝑟1,𝑣′22 + 𝑟2,...,𝑣′2𝑁 + 𝑟𝑁} using 𝑃𝑅𝑐. Finally, the client
sends a request containing {[[−2𝑣′1]],[[−2𝑣′2]],...,[[−2𝑣′𝑁 ]]} and
{[[𝑣′21 + 𝑟1

]]
,
[[
𝑣′22 + 𝑟2

]]
,...,

[[
𝑣′2𝑁 + 𝑟𝑁

]]} to the server.
Distance Computation Phase: After receiving the client’s

request, the server first checks whether the client has submitted
all the encrypted WiFi fingerprint components. If not, the
server ignores the request. Otherwise, the server generates a
random number 𝑅, and randomly chooses 𝑁 ′ dimensions, de-
noted as 𝐶 = {𝑐1, 𝑐1, ..., 𝑐𝑁 ′}, from the original 𝑁 dimensions
in the WiFi fingerprint database 𝐷. Then the server computes[[
𝑆′
𝑖,1

]]
,
[[
𝑆′
𝑖,2

]]
, [[𝑆′

3]], and [[𝑑′𝑖]] (for 1 ≤ 𝑖 ≤ 𝑀 ):

[[
𝑆′
𝑖,1

]]
=

⎡
⎣
⎡
⎣∑
𝑗∈𝐶

𝑣2𝑖,𝑗

⎤
⎦
⎤
⎦ (7)

[[
𝑆′
𝑖,2

]]
=

∏
𝑗∈𝐶

[[−2𝑣′𝑗
]]𝑣𝑖,𝑗 (8)

[[𝑆′
3]] =

∏
𝑗∈𝐶

[[
𝑣′2𝑗 + 𝑟𝑗

]]
(9)

[[𝑑′𝑖]] =
[[
𝑆′
𝑖,1 + 𝑆′

𝑖,2 + 𝑆′
3 +𝑅

]]
=

[[
𝑆′
𝑖,1

]] ⋅ [[𝑆′
𝑖,2

]] ⋅ [[𝑆′
3]] ⋅ [[𝑅]] (10)

Finally, the server returns {[[𝑑′𝑖]]}𝑀𝑖=1 to the client.
Location Retrieval Phase: After receiving {[[𝑑′𝑖]]}𝑀𝑖=1, the

client decrypts the ciphertexts and estimates its location using
the same method as the naive scheme. Its correctness is
guaranteed by the following theorem.

Theorem 1. Given 𝑑′𝑒 and 𝑑′𝑓 returned by the server for one
request. If 𝑑′𝑒 > 𝑑′𝑓 , we have 𝑑𝑒 > 𝑑𝑓 , where 𝑑𝑒 and 𝑑𝑓 are the
squared Euclidean distances between 𝑉𝑒 and 𝑉 ′, and between
𝑉𝑓 and 𝑉 ′, over 𝑁 ′ dimensions, respectively.

Proof:

𝑑′𝑒 − 𝑑′𝑓
= (𝑆′

𝑒,1 + 𝑆′
𝑒,2 + 𝑆′

3 +𝑅)− (𝑆′
𝑓,1 + 𝑆′

𝑓,2 + 𝑆′
3 +𝑅)

= (
∑
𝑗∈𝐶

𝑣2𝑒,𝑗 +
∑
𝑗∈𝐶

(−2𝑣𝑒,𝑗 ⋅ 𝑣′𝑗) +
∑
𝑗∈𝐶

(𝑣′2𝑗 + 𝑟𝑗))−

(
∑
𝑗∈𝐶

𝑣2𝑓,𝑗 +
∑
𝑗∈𝐶

(−2𝑣𝑓,𝑗 ⋅ 𝑣′𝑗) +
∑
𝑗∈𝐶

(𝑣′2𝑗 + 𝑟𝑗))

= (
∑
𝑗∈𝐶

𝑣2𝑒,𝑗 +
∑
𝑗∈𝐶

(−2𝑣𝑒,𝑗 ⋅ 𝑣′𝑗) +
∑
𝑗∈𝐶

𝑣′2𝑗 )−

(
∑
𝑗∈𝐶

𝑣2𝑓,𝑗 +
∑
𝑗∈𝐶

(−2𝑣𝑓,𝑗 ⋅ 𝑣′𝑗) +
∑
𝑗∈𝐶

𝑣′2𝑗 )

= 𝑑𝑒 − 𝑑𝑓

Thus if 𝑑′𝑒 > 𝑑′𝑓 , we have 𝑑𝑒 > 𝑑𝑓 .

3) Privacy Analysis: Though {[[𝑑′𝑖]]}𝑀𝑖=1 is computed by
the server, the server is not able to pick out the 𝑘 nearest
neighbors, because it does not have the private key 𝑃𝑅𝑐.
Therefore the server cannot figure out the client’s location,
guaranteeing the client’s location privacy. Further, the Location
Retrieval Phase is performed only at the client side, thus the
complete PriWFL is resistant to Location Privacy Attack I.

In the proposed PriWFL scheme, the client submits
{[[−2𝑣′1]], [[−2𝑣′2]], ... , [[−2𝑣′𝑁 ]]} and {[[𝑣′21 + 𝑟1

]]
,
[[
𝑣′22 + 𝑟2

]]
,

... ,
[[
𝑣′2𝑁 + 𝑟𝑁

]]} to the server. The server cannot recover
{𝑣1, 𝑣2, ..., 𝑣𝑁}. Namely, PriWFL is resistant to Location
Privacy Attack II according to the following Theorem.

Theorem 2. Given
[[−2𝑣′𝑗

]]
and

[[
𝑣′2𝑗 + 𝑟𝑗

]]
, the server cannot

recover 𝑣′𝑗 , if 𝑟𝑗 is kept secret.

Proof: After getting
[[−2𝑣′𝑗

]]
and

[[
𝑣′2𝑗 + 𝑟𝑗

]]
, the server

can compute the following equation:[[(−2𝑣′𝑗
) ⋅ (−1

2
𝑣′𝑗

)]]
=

[[
𝑣′2𝑗 + 𝑟𝑗 − 𝑟𝑗

]]
(11)

By applying the homomorphic property of the Paillier cryp-
tosystem, we can transform (11) into the following equation:[[−2𝑣′𝑗

]](− 1
2𝑣

′
𝑗) =

[[
𝑣′2𝑗 + 𝑟𝑗

]] ⋅ [[−𝑟𝑗 ]] (12)

In (12), 𝑟𝑗 is a big random number generated by the client.
Thus even the server knows

[[−2𝑣′𝑗
]]

and
[[
𝑣′2𝑗 + 𝑟𝑗

]]
, it still

cannot recover 𝑣′𝑗 .
The server’s data privacy is preserved according to the

following two theorems.

Theorem 3. The proposed PriWFL is resistant to Data Pri-
vacy Attack I.

Proof: To get the WiFi fingerprint database, a malicious
client should generate at least 𝑁 distinct WiFi fingerprints
{𝑉 ′

ℎ}𝑁ℎ=1. However, for any 𝑉 ′
ℎ submitted by the client, the

server randomly chooses 𝑁 ′ APs to compute the Euclidean
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distance, where 𝑁 ′ is a secret number that is less that 𝑁 but
is greater than a threshold 𝜏 . Thus (5) has 𝐴 = 𝐶𝜏

𝑁 +𝐶𝜏+1
𝑁 +

... + 𝐶𝑁
𝑁 possible combinations for a malicious client to try.

For {𝑉 ′
ℎ}𝑁ℎ=1, there are in total 𝐴𝑁 combinations, resulting in

𝐴𝑁 solutions. We claim that this is computationally infeasible,
even with the most powerful computer in today’s market. For
example, when 𝜏 = 6 and 𝑁 = 10 as in our experiment,
𝐴𝑁

≈ 7.34× 1025. Today’s most powerful computer achieves
a processing speed of 33.86 petaflops per second [16]. This
implies that it will take hundreds of years to solve (5) with
the best computer, indicating that PriWFL is computationally
secure (practically secure).

Theorem 4. The proposed PriWFL is resistant to Data Pri-
vacy Attack II.

Proof: Though a malicious client may exhaustively list
all possible WiFi Fingerprint combinations and get the corre-
sponding locations, it cannot filter out the noisy fingerprints
through (6) because the server masks the squared Euclidean
distance by a random number 𝑅 for each request. The localiza-
tion performance using 𝐷′ is poor, due to the low localization
accuracy (As shown in section V-D) .

D. Extending PriWFL to a multi-building scenario

Within a single building, the number of APs (i.e. 𝑁 ) and
the total number of WiFi fingerprints in a database (i.e. 𝑀 ) are
small. If a service provider wants to provide the localization
service in a town-scale scenario, 𝑁 and 𝑀 become very large,
leading to a heavy computational overhead both at the server
side and the client side.

Assume that there are in total 𝑆 buildings, denoted as
{𝐵1, 𝐵2, ..., 𝐵𝑆}. We further assume that within each building
𝐵𝑖, there are at least 𝑁 APs within reach at any position,
denoted as {𝐴𝑃𝑖𝑗}𝑁𝑗=1. To achieve scalability, we reduce the
dimension of the fingerprints in each building from 𝑁 ⋅𝑀 to
𝑁 , with each new dimension denoting the RSS value from
one of the 𝑁 reachable APs within the building. In the Pre-
process phase, the server distributes metadata to the client.
The metadata consists of three tables 𝑇1 = ⟨𝑖, (𝑥𝑖, 𝑦𝑖)⟩𝑀𝑖=1,
𝑇2 = ⟨𝑖, (𝑎𝑖, 𝑏𝑖)⟩𝑆𝑖=1, and 𝑇3 = ⟨𝑖, {𝐴𝑃𝑖,𝑗}𝑁𝑗=1⟩𝑆𝑖=1. Here
𝑇1 stores the indexes and all the locations where the WiFi
fingerprints are measured, and 𝑇2 indicates that the locations
⟨𝑙, (𝑥𝑙, 𝑦𝑙)⟩𝑏𝑖𝑙=𝑎𝑖

belong to building 𝐵𝑖. From 𝑇3, the client gets
to know which APs can be used for localization and how
to line up the sensed WiFi fingerprint with the fingerprints
in the database. Assume that the client is in building 𝐵𝑢,
which can be determined by GPS before entering the building.
In the Preparation phase, the client informs the server of 𝑤
buildings it may reside and the server just needs to calculate
the distance between the submitted WiFi fingerprint and the
WiFi fingerprints in the 𝑤 buildings. It is a tradeoff between
efficiency and privacy. A larger 𝑤 leads to a higher compu-
tational overhead, but implies a higher guarantee for location
privacy. After receiving {[[𝑑′𝑖]]}𝑀𝑖=1, the client only needs to
decrypt {[[𝑑′𝑖]] ∣𝑎𝑢 ≤ 𝑖 ≤ 𝑏𝑢}, with 𝑎𝑢 and 𝑏𝑢 being retrieved
from Table 𝑇2.

IV. EXPLOITING INDOOR MOBILITY PREDICTION TO

REDUCE THE CLIENT’S COMPUTATIONAL OVERHEAD

In the Location Retrieval phase described above, a client
in building 𝐵𝑢 needs to decrypt {[[𝑑′𝑖]] ∣𝑎𝑢 ≤ 𝑖 ≤ 𝑏𝑢}.
This process is still time-consuming especially for resource-
constrained devices such as smartphones. According to [17], it
costs more than 10 seconds to decrypt [[𝑑′𝑖]] for 1 ≤ 𝑖 ≤ 100 on
an ordinary smartphone. Furthermore, for some applications
such as indoor navigation, a client needs to make frequent lo-
calization requests, leading to a high computational overhead.
To overcome this problem, we propose an indoor mobility pre-
diction algorithm, which outputs the set of possible locations
(denoted by 𝐿𝑜𝑐𝑆𝑒𝑡) at time 𝑇𝑖+1 for a client based on its
location at time 𝑇𝑖. Then the device only needs to decrypt
{[[𝑑′𝑖]] ∣ (𝑥𝑖, 𝑦𝑖) ∈ 𝐿𝑜𝑐𝑆𝑒𝑡}. The design of the algorithm is
motivated by the following three observations. First, a client’s
mobility in an indoor environment is constrained by the indoor
layout. For example, it’s impossible for a client to walk
through walls. Second, limited by walking speed, a client
cannot move a long distance in a short time interval. Third,
a client can learn the indoor layout through the indoor map
downloaded from the localization service provider.

For simplicity, we take Figure 3 as an example to illustrate
our algorithm. Figure 3(a) is the integrated layout of an office
building, in which the black spots represent locations where
the recorded WiFi fingerprints are obtained. We partition the
layout into a mesh of grids, ensuring that there is only one
black spot at every grid. Figure 3(b) demonstrates the detailed
layout of one room in the building. We model the indoor layout
through a graph 𝐺, in which each vertex stands for a grid. If
two grids 𝑔𝑖 and 𝑔𝑗 are adjacent to each other, and there is no
barrier (such as a furniture or a wall) between them, then there
is an edge linking 𝑔𝑖 and 𝑔𝑗 . A client can at most move from
one grid to one of its adjacent neighbors within △𝑡, which
depends on the client’s walking speed and the grid size. The
graph representation corresponding to the room in Figure 3(b)
is shown in Figure 3(c), which is a subgraph of 𝐺.

Assume that a client resides in grid 𝑔𝑠 at time 𝑡. After △𝑡,
the client may move from 𝑔𝑠 to one of the neighboring grids,
or stay in 𝑔𝑠. Thus 𝐿𝑜𝑐𝑆𝑒𝑡 = 𝑁𝑒𝑖𝑠 ∪ {𝑔𝑠} (at time 𝑡+△𝑡),
where 𝑁𝑒𝑖𝑠 denotes the neighbors of 𝑔𝑠. For example, assume
that the client is in grid 𝑔12 at time 𝑡 in Figure 3(c). After
△𝑡, the client may move to grid 𝑔11, 𝑔8, or stay in 𝑔12. Then
𝐿𝑜𝑐𝑆𝑒𝑡 = {𝑔11, 𝑔8, 𝑔12}. After 2△𝑡, the possible location set
for this client is 𝐿𝑜𝑐𝑆𝑒𝑡 = {𝑔12, 𝑔11, 𝑔10, 𝑔8, 𝑔3, 𝑔4}. If the
client requests its location at time 𝑡 + 2△𝑡, it only needs to
decrypt {[[𝑑′𝑖]] ∣ (𝑥𝑖, 𝑦𝑖) ∈ 𝐿𝑜𝑐𝑆𝑒𝑡} in the Location Retrieval
phase to find out the 𝑘 nearest neighbors and estimate its
current location. We summarize this algorithm in Algorithm 1.

V. PERFORMANCE EVALUATION

In this section, we report the results of our theoretical
analysis and experimental study to demonstrate the perfor-
mance of PriWFL. As the Pre-Process phase does not involve
any computation, we only evaluate the other three phases.
Table I summarizes the theoretical analysis results of PriWFL,
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(a) The layout of the building (b) The detailed layout of one room in (a) (c) Graph description of (b) 

Fig. 3. Building layout, the black spots in (a) are the locations where the fingerprints are trained.

Algorithm 1 Mobility prediction algorithm
Input:

𝐺; 𝑔𝑠 - the grid the client resides at time 𝑇𝑖

Output:
𝐿𝑜𝑐𝑆𝑒𝑡 - the client’s possible locations at time 𝑇𝑖+1

1: 𝑛 = ⌈(𝑇𝑖+1 − 𝑇𝑖) /△𝑡⌉
2: 𝑄 = 𝐿𝑜𝑐𝑆𝑒𝑡 = {𝑔𝑠}
3: for 𝑗 ← 1 to 𝑛 do
4: 𝑃 = ∅
5: for each 𝑔𝑖 in Q do
6: Get the neighbor list 𝑁𝑒𝑖𝑖 of 𝑔𝑖
7: 𝑃 = 𝑃 ∪𝑁𝑒𝑖𝑖
8: 𝐿𝑜𝑐𝑆𝑒𝑡 = 𝐿𝑜𝑐𝑆𝑒𝑡 ∪𝑁𝑒𝑖𝑖
9: 𝑄 = 𝑄− {𝑔𝑖}

10: end for
11: 𝑄 = 𝑃
12: end for
13: return 𝐿𝑜𝑐𝑆𝑒𝑡;

where 𝐸𝑥𝑝 denotes one modular exponentiation, 𝑀𝑢𝑙 denotes
one modular multiplication, and 𝐿 is the bit length of a
ciphertext. To evaluate the performance in practical settings,
we implement the client side of PriWFL on a Android platform
with a Qualcomm Snapdragon600 quad-core 1.7GHz CPU
and 2G RAM, and the server side on a 32-bit computer with
Intel i7 CPU of 3.4 GHz and 4G memory. The database we
use contains 𝑀 = 1000 WiFi fingerprints, among which 230
records are trained in three different office buildings, and the
rest are randomly generated. The total number of APs is 15.
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Fig. 5. Cost of the Distance Computation phase.

A. Cost of the Preparation Phase

We first measure the computation time and bandwidth cost
in the preparation phase under different parameter settings.
Figure 4(a) shows the relationship between the time cost and
𝑁 under different Paillier Modulus. We observe that i) for
Paillier Modulus 512 the computation time increases from
0.106s to 0.269s when 𝑁 is increased from 6 to 15; ii) using
Paillier Modulus 1024 results in a larger time cost than using
Paillier Modulus 512; and iii) the time cost ranges from 0.781s
to 1.960s when 𝑁 is increased from 6 to 15.

At the end of this phase, the client sends the encrypted data
to the server. The bandwidth cost is shown in Figure 4(b).
When 𝑁 is increased from 6 to 14, the consumed bandwidth
ranges from 3.605KB to 9.012KB for Paillier Modulus 512,
and from 7.218KB to 16.840KB for Paillier Modulus 1024.

B. Cost of the Distance Computation Phase

In this phase, the server randomly selects 𝑁 ′ (6 ≤ 𝑁 ′ ≤ 𝑁 )
dimensions to compute the encrypted distance between the
client’s WiFi fingerprint and each fingerprint in the database.
We set 𝑁 = 15, and investigate the impact of database size
𝑀 on the time cost and bandwidth cost in the Distance
Computation Phase. Figure 5(a) shows the computational
overhead under different database size 𝑀 . It is observed that
when 𝑀 increases from 100 to 1000, the computation time
increases from 0.911s to 9.203s for Paillier Modulus 512, and
from 6.099s to 60.907s for Paillier Modulus 1024.

After computation, the server sends the encrypted distance
back to the client. As depicted the Table I, the communication
overhead is linear to the size of the WiFi fingerprint database.
Figure 5(b) shows the relationship between the communication
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TABLE I
COMPLEXITY ANALYSIS RESULTS

Phases
Computation

Communication (in bits)
Client Server

Preparation Phase 2𝑁 ⋅ 𝐸𝑥𝑝+ 4𝑁 ⋅𝑀𝑢𝑙 𝑛𝑜𝑛𝑒 2𝑁 ⋅ 𝐿
Distance Computation Phase 𝑛𝑜𝑛𝑒 𝑀 ⋅ (𝑁 ′ + 1) ⋅ 𝐸𝑥𝑝+𝑀 ⋅ (2𝑁 ′ + 3) ⋅𝑀𝑢𝑙 𝑀 ⋅ 𝐿

Location Retrieval Phase ∣𝐿𝑜𝑐𝑆𝑒𝑡∣ ⋅ 𝐸𝑥𝑝 𝑛𝑜𝑛𝑒 𝑛𝑜𝑛𝑒

(a) Layout of the testing floor.

0 2 4 6 8 10 12 14 16 18 20 22
0

20

40

60

80

100
 Number of decryption
 Computational overhead saving

Time interval (s)

N
um

be
r o

f d
ec

ry
pt

io
n

0

20

40

60

80

100

C
om

putational
overhead saving (%

)

(b) The performance of mobility prediction.

0 2 4 6 8 10 12 14 16 18 20 22

0

1

2

3

4

5

Ti
m

e 
co

st
 (s

)

Time interval (s)

 Paillier Modulus 512
 Paillier Modulus 1024

(c) Time cost in Location Retrieval Phase.

Fig. 6. The cost of the Location Retrieval Phase.

overhead and 𝑀 . We observe that as 𝑀 increases from
100 to 1000, the bandwidth cost ranges from 30.049KB to
300.445KB for Paillier Modulus 512, and from 60.142KB to
601.438KB for Paillier Modulus 1024.

C. Cost of the Location Retrieval Phase

To reduce the computational overhead, we propose the
indoor mobility algorithm, which exploits the location at
time 𝑡𝑖 to predict the possible locations (𝐿𝑜𝑐𝑆𝑒𝑡) at time
𝑡𝑖 + 1. In this subsection, we first evaluate the effectiveness
of our prediction algorithm. For this purpose we conduct an
experiment on the first floor of an office building. Figure 6(a)
shows the layout of the floor, which covers approximately
520 (26 × 20) square meters. We partition the floor into 76
grids, ensuring there is only one WiFi fingerprint measured
at a single grid. Assume that within each second, one can
move at most from a grid to one of the adjacent grids. In
our experiments, we randomly select the location at time 𝑡𝑖,
and increase the time interval between 𝑡𝑖 and 𝑡𝑖+1 from 2s to
20s. The experiments are repeated 100 times and the averaged
results are reported. As demonstrated in Figure 6(b), when the
time interval between two localization requests is 2 seconds,
the client performs 3.3 decryptions in average, saving about
96% computational overhead in the Location Retrieval phase.
With the increase of the time interval, the size of the client’s
possible location set 𝐿𝑜𝑐𝑆𝑒𝑡 becomes larger. For example,
when the interval reaches 20 seconds, the client’s possible
location set 𝐿𝑜𝑐𝑆𝑒𝑡 contains 74 positions.

Figure 6(c) demonstrates the relationship between the time
cost in the Location Retrieval phase and the time interval
under different Paillier Modulus. When using Paillier Modulus
512, the client can estimate its location within 1s; when using
Paillier Modulus 1024 the time gets larger but it is always less
than 5s.
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Fig. 7. The effectiveness of PriWFL in defending Data Privacy Attack II.

D. The effectiveness of PriWFL

As described above, PriWFL can protect a client’s location
privacy and is resistant to Data Privacy Attack I; but this
can not be verified through experiments. Thus, we evaluate
the effectiveness of PriWFL when defensing Data Privacy
Attack II. In our experiments, the database contains 230 WiFi
fingerprints collected in three office buildings. Each WiFi
fingerprint is a 10-dimensional vector. The database 𝐷′ is
constructed as follows. In the first step, we randomly generate
a WiFi fingerprint 𝑉 ′ and query the localization system to get
the distances between 𝑉 ′ and all the items in 𝐷, i.e. {𝑑𝑖}𝑀𝑖=1.
We further estimate the location (𝑥′, 𝑦′) corresponding to
𝑉 ′. In the second step, we check if all the distances are
greater than 10 × 𝜀2, where 𝜀 = 5. If false, ⟨(𝑥′, 𝑦′) , 𝑉 ′⟩ is
inserted into 𝐷′; if true, 𝑉 ′ is regarded as a noisy fingerprint.
As it is computationally infeasible for a malicious client to
exhaustively list all possible fingerprints, we set ∣𝐷′∣ to be
6000, 9000, and 12000. The localization accuracy of using 𝐷
and 𝐷′ is shown in Figure 7. We observe that the performance
of using 𝐷′ is significantly poorer than that of using 𝐷. Using
𝐷′, nearly 50% of the localization errors are larger than 7𝑚,
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which is unacceptable for many application scenarios [3]. We
also observe that the location accuracy does not improve as the
size of 𝐷′ increases. Thus we claim that PriWFL can defend
against Data privacy Attack II effectively.

VI. RELATED WORK

In this section, we discuss two lines of related research:
location privacy and biometric identification.

A. Location Privacy in Location-Based Services

To protect the client’s location privacy in Location-Based
Services, several approaches have been proposed. The most
popular approach is 𝑘-anonymity [7] [8], which provides a
form of plausible deniability by ensuring that the client cannot
be individually identified from a group of 𝑘 clients. Mix
Zone [9] is another popular approach. It divides the whole
region into application zones and mix zones. Clients report
their locations in application zones, and receive new, unused
pseudonyms at mix zones. This helps to prevent an attacker
from linking pseudonyms because a new pseudonym could
have been assigned to anyone in a mix zone.

The above-mentioned approaches rely on a trusted third par-
ty, and they all assume that clients know their own locations.
In this paper, we address the privacy issues when localizing
a to-be-localized client based on RSS fingerprints; thus this
work is orthogonal to the existing research in location privacy
for LBSs.

B. Privacy in Biometric Identification

To protect the clients’ privacy in the process of biometric
identification, Erkin et al. [18] proposed a privacy-preserving
face recognition system, which hides the client’s biometric
and the comparison result from the server that performs the
matching operation. Huang et al. [10] proposed a privacy-
preserving biometric identification protocol with their novel
garbled circuit design and the ciphertext packing technique.
Yuan et al. [11] proposed a privacy-preserving biometric
identification scheme that achieves efficiency by exploiting the
power of cloud computing.

All these schemes are proposed to find only the closest
match. When being extended to 𝑘 nearest neighbor search,
multi-round computation and communication are required to
retrieve the records corresponding to the 𝑘 closest matches.
In WiFi fingerprint-based localization, 𝑘 “closest fingerprints”
need to be identified to derive the client’s location.

VII. CONCLUSIONS AND FUTURE RESEARCH

In this paper, we analyze the privacy issues of WiFi
fingerprint-based localization. To thwart the privacy threat-
s, we propose a novel Privacy-Preserving WiFi Fingerprint
Localization scheme (PriWFL), which utilizes homomorphic
encryption to protect both the client’s location privacy and
the localization service provider’s data privacy. Furthermore,
we design an indoor mobility prediction algorithm to reduce
the computational overhead at the client side. To validate Pri-
WFL, we perform extensive theoretical performance analysis,

implement PriWFL in a typical Android platform, and carry
out extensive experimental study. Our results demonstrate the
effectiveness and practicality of PriWFL.
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